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 16 

A key challenge for the study and treatment of neuropsychiatric diseases is to target 17 

pathological neural activities with high temporal resolution. Pain is a fundamental sensory-18 

affective experience, and chronic pain, a disorder that affects one in three adults, comprises 19 

discrete symptomatic episodes of unpredictable timing and frequency1. Non-adaptive, 20 

continuous treatments for pain, especially chronic pain, are associated with poor efficacy 21 

and untoward side effects including addiction. Brain-machine interface (BMI) offers a 22 

potential solution to this challenge. BMIs have been developed to detect and ablate epileptic 23 

events and to link cortical commands with prosthetic devices for motor control2-15. Here we 24 



have engineered a BMI to uniquely modulate the sensory-affective experience in rats by 25 

coupling neural codes for nociception directly with therapeutic cortical stimulation in a 26 

closed-loop system. We record neural activities in the anterior cingulate cortex (ACC), a 27 

region that is critical for pain processing16-23, in freely behaving rats, and decode the onset 28 

of evoked pain episodes in real time based on ensembles of online sorted spikes24,25. We 29 

then couple this pain onset detection with optogenetic activation of the prelimbic prefrontal 30 

cortex (PFC), a region well-known to provide descending pain inhibition in rodents26-30. 31 

Our closed-loop BMI not only effectively inhibits sensory and affective components of acute 32 

mechanical and thermal pain, but also detects and relieves sensory hypersensitivity and 33 

enhanced aversion associated with chronic pain. Furthermore, this system enables the 34 

identification and regulation of tonic pain. Together, these findings support the closed-loop 35 

neuromodulation strategy for both pain therapy and the study of pain mechanisms. More 36 

generally, these results provide a blueprint for the development of BMIs to target 37 

neuropsychiatric disorders affecting the sensory and affective systems. 38 

 39 

To design a closed-loop BMI for pain, we paired a detection arm with a treatment arm (Fig. 1a). 40 

For pain detection, we recorded neural activity from the ACC with silicon probes (Fig. 1b and 41 

Extended Data Fig. 1). Numerous studies have shown that the ACC is critical for pain 42 

processing16-23. Recently, we and others have demonstrated that neural signals from the ACC, 43 

including spike activities, can be used to decode the intensity and timing of pain with good 44 

sensitivity and specificity24,25,31. We have developed a state-space model (SSM) to detect the 45 

onset of pain experience based upon ensemble spike activity in the ACC (Methods; Fig. 1c, and 46 

Extended Data Fig. 2a). With this SSM-based strategy, we identify a proxy for the acute pain 47 



signal that drives the observed population spike activity, thus formulating pain onset detection as 48 

detection of a change from the putative baseline condition. This model-based strategy has 49 

revealed that the latent processes driving ACC neuronal activities correlate to the onset of 50 

observed pain behavior with high degrees of accuracy and temporal precision24,25. Furthermore, 51 

the performance of our strategy for detecting pain onset is robust with both well-isolated offline 52 

sorted single units and multi-unit activity, thus facilitating its application with online sorted 53 

spikes24. For the treatment arm, we used optogenetic activation of the prelimbic region of the 54 

PFC (Extended Data Fig. 1b), as previous work has shown that the activation of this region 55 

provides effective relief of sensory and affective pain symptoms via descending projections in 56 

rodents26-30. To assist online model parameter selection and data visualization, we designed a 57 

custom graphic user interface (GUI) to integrate the pain detection arm with the treatment arm 58 

(Extended Data Fig. 2b), forming a closed-loop neural interface.   59 

 60 

We first applied this real-time BMI in the context of acute thermal pain. We used a calibrated 61 

infrared (IR) generator from the Hargreaves’ pain assessment toolkit to deliver a noxious 62 

stimulus at high IR intensity, and a non-noxious stimulus at low IR intensity to the hind paws of 63 

rats (Fig. 2a, b). As shown previously, ACC neurons contralateral to the site of peripheral 64 

stimulation increased their firing rates in response to the noxious thermal stimulus (Extended 65 

Data Fig. 3)31. In contrast, the non-noxious stimulus did not produce significantly increased 66 

spiking activities in the same neurons (Extended Data Fig. 3). We then applied our SSM-based 67 

decoding strategy to detect the onset of pain experience in real time by identifying a change in 68 

online sorted ACC ensemble spikes (Extended Data Fig. 2). Our model-based strategy detected 69 

pain onset reliably after the presentation of noxious stimulus, with high temporal precision (Fig. 70 



2c). The SSM-based decoder was able to detect up to 75% evoked thermal pain episodes, with 71 

few false detections (Fig. 2d, e and Extended Data Table 1). In a majority of the cases, detection 72 

occurred after the presentation of noxious stimulus but prior to paw withdrawals, suggesting that 73 

cortical nociceptive response precedes behavioral response (Fig. 2f, g). This temporal delay also 74 

indicates the possibility for a closed-loop system to intervene in pain behaviors in real time 75 

immediately after pain detection. Thus, we coupled pain onset detection with optogenetic 76 

activation of the prelimbic PFC contralateral to the ACC recording sites (Fig. 1 and Extended 77 

Data Fig. 1). PFC activation triggered by the SSM in our closed-loop BMI prolonged paw 78 

withdrawal latency on the Hargreaves’ test (Fig. 2f, h), demonstrating pain relief. This pain-79 

inhibitory effect provided by the BMI was as strong as constitutive, manually controlled 80 

prelimbic PFC activation, further validating the capability of this closed-loop neuromodulation 81 

system to inhibit acute thermal pain. Next, we used pin prick (PP) to deliver mechanical pain to 82 

the hind paws of rats (Fig. 2i, j). In contrast to IR, PP caused almost instantaneous withdrawal 83 

response. Nevertheless, ACC neurons increased their firing rates in response to noxious 84 

stimulations, in contrast to non-noxious stimulations (von Frey filaments, or vF) (Extended Data 85 

Fig. 4). Our SSM-based decoder accurately detected ~60% of evoked mechanical pain episodes 86 

(Fig. 2k-m, and Extended Data Table 1). We then used a classic conditioned place aversion 87 

(CPA) assay to assess the ability of the BMI to control the aversive response to mechanical 88 

pain31-34. During the conditioning phase, we applied noxious stimulations (PP) to the rats’ hind 89 

paws in both treatment chambers (Fig. 2n). In one of these chambers, rats received automated, 90 

BMI-triggered therapeutic PFC activation. In the opposite chamber, rats received randomly 91 

delivered PFC stimulations of matching duration and intensity. After conditioning, rats preferred 92 

the chamber associated with the BMI treatment (Fig. 2o-q). In contrast, rats did not develop such 93 



preference for the BMI treatment when the peripheral stimuli were non-noxious, indicating that 94 

PFC stimulation delivered by the BMI was not intrinsically rewarding or aversive (Extended 95 

Data Fig. 5). These results demonstrate that a closed-loop system coupling therapeutic PFC 96 

activation with decoded pain episodes based on ACC activities inhibits both sensory and 97 

affective behavioral response to acute pain. At the cellular level, activation by BMI reduced the 98 

peak and cumulative firing rates of ACC pyramidal neurons after noxious stimulations (Fig. 2r-99 

t). This temporally specific link between reduced ACC neuronal activity and decreased pain 100 

aversion validates a causal effect between ACC activity and affective pain behaviors that has 101 

been suggested in previous studies20,31. Therefore, a closed-loop BMI can not only deliver 102 

therapeutic interventions in real time, but also enable studies of causal inference for the neural 103 

basis of pain.    104 

 105 

Next, we investigated whether this closed-loop BMI could be used to inhibit behaviors 106 

associated with chronic pain. Two hallmark features of chronic pain are hypersensitivity to 107 

peripheral stimuli and tonic or spontaneous pain. We first assessed hypersensitivity in a well-108 

established inflammatory pain model (Complete Freund’s Adjuvant or CFA model, Fig. 3a). As 109 

expected31, CFA-treated rats developed sensory allodynia to mechanical von Frey filament (vF) 110 

stimulations, as manifested by paw withdrawal responses (Fig. 3b and Extended Data Fig. 6). 111 

Our neural decoding analysis was able to distinguish a 6g vF stimulus sufficient to elicit 112 

nocifensive withdrawals from a 0.4g vF stimulus that did not consistently elicit withdrawals (Fig. 113 

3c-e and Extended Data Table 1). These results indicate that our SSM-based decoder can detect 114 

allodynia events in real time as well as events triggered by noxious stimuli such as PP. BMI-115 

driven activation of the prelimbic PFC, meanwhile, reduced mechanical allodynia (Fig. 3f). In 116 



addition to peripheral hypersensitivity at the site of injury, chronic pain also causes an increased 117 

aversive response, which can be assessed by the conditioned place aversion (CPA) assay27,31-34. 118 

In one chamber, we paired a peripheral 6g vF stimulus (which is sufficient to induce allodynia) 119 

with BMI-driven activation of the PFC, and in the opposite chamber paired this stimulus with 120 

randomly delivered PFC activation (Fig. 3g). After conditioning, rats preferred the BMI-paired 121 

chamber (Fig. 3h-j). In contrast, rats did not prefer the BMI-paired chamber when they received 122 

a non-noxious, 0.4g vF stimulus during conditioning (Extended Data Fig. 7). We then repeated 123 

these experiments in a model of chronic neuropathic pain (Spared Nerve Injury or SNI)26,35 (Fig. 124 

3k, l and Extended Data Fig. 8). Again, our SSM could detect when rats received a 6g vF 125 

stimulus that elicited nocifensive withdrawals, versus when rats received a 0.4g vF stimulus that 126 

did not consistently elicit withdrawals (Fig. 3m-o and Extended Data Table 1). The BMI in turn 127 

reduced mechanical allodynia in the SNI model (Fig. 3p). In the CPA assay, we paired the 6g vF 128 

stimulus with either BMI-triggered or random PFC activation (Fig. 3q), and SNI-treated rats 129 

preferred the BMI-paired chamber (Fig. 3r-t). In contrast, rats showed no preference for the 130 

BMI-paired chamber if the peripheral stimulus was non-noxious (Extended Data Fig. 9). 131 

Together, these results demonstrate that peripheral allodynia in the chronic pain state produces 132 

similar neural responses in the ACC as acute noxious stimulations in naïve animals, and these 133 

neural responses can in turn be used to trigger closed-loop neurostimulation to inhibit sensory 134 

hypersensitivity and decrease aversion. 135 

  136 

In addition to hypersensitivity to evoked stimuli, chronic pain also causes tonic or spontaneous 137 

pain34. Recent studies have shown that pharmacological or optogenetic interventions during the 138 

CPA assay can unmask the presence of tonic pain26,34,36,37. However, identifying the dynamic 139 



neural processes that underlie individual spontaneous pain episodes remains an unmet challenge 140 

in both animal models and human subjects. The specificity and high temporal precision of the 141 

closed-loop BMI provides a potential solution to this problem. In CFA-treated rats, we paired 142 

one CPA chamber with BMI, and the other chamber with random activation of the PFC of 143 

matching duration and intensity, in the absence of additional peripheral stimulations (Fig. 4a). 144 

We hypothesized that the same decoding strategy we employed for evoked pain should detect 145 

individual spontaneous pain episodes to trigger PFC activation to relieve pain during a prolonged 146 

conditioning phase38. Remarkably, after training with an evoked stimulus, our decoder identified 147 

putative spontaneous pain events in the CFA model based on ACC ensemble spikes (Fig. 4b). 148 

The neural signature for these putative spontaneous pain events bears resemblance to the neural 149 

signature for evoked pain episodes (Fig. 3c). Importantly, after conditioning, rats developed 150 

preference for the chamber associated with BMI activation (Fig. 4c-e). Next, we tested the ability 151 

of the BMI for targeting tonic neuropathic pain in the SNI model (Fig. 4f). Our method provided 152 

similar tonic pain detection in the SNI model (Fig. 4g), and rats showed the same preference for 153 

the BMI treatment, suggesting that our closed-loop BMI could inhibit tonic pain (Fig. 4h-j). As 154 

PFC activation triggered by detected pain onset induces pain relief compared with random 155 

activation, the detected episodes have a high likelihood of being true spontaneous pain events. 156 

Therefore, our BMI can be a valuable tool for identifying spontaneous pain for mechanistic 157 

inquiries, similar to the application of the BMI technology in studies of motor learning2. To 158 

validate the capability of our closed-loop BMI to relieve tonic pain, we examined its efficacy at 159 

inhibiting paw-licking behaviors. Paw licking has been identified as a spontaneous pain behavior 160 

in inflammatory pain models39-42. Here we compared the number and total duration of paw 161 

licking episodes during a 10-min session, and found that the closed-loop BMI was effective in 162 



reducing the paw-licking frequency and duration in the CFA model (Extended Data Fig. 10). 163 

These results further support the efficacy of the closed-loop BMI to detect and treat tonic pain in 164 

rodent models.  165 

 166 

To date, treatment options for severe acute or chronic pain remain limited, and continuous 167 

pharmacological and neuromodulation therapies are associated with multiple side effects. Here 168 

we have engineered a closed-loop rodent BMI as a prototype demand-based neuromodulation 169 

system to inhibit symptoms of acute and chronic pain and to provide causal inference for 170 

mechanisms of nociception. Future refinement of this technology and its adaptation to humans 171 

hold promise for non-pharmacological treatment for pain. More generally, these results suggest 172 

the feasibility of closed-loop BMI to target sensory and affective processes associated with 173 

neuropsychiatric diseases. 174 

 175 

METHODS 176 

Experimental protocol, data acquisition and BMI system architecture  177 

All experimental studies were performed in accordance with the New York University School of 178 

Medicine (NYUSOM) Institutional Animal Care and Use Committee and the National Institutes 179 

of Health (NIH) Guide for the Care and Use of Laboratory Animals to ensure minimal animal 180 

use and discomfort.  181 

 182 

Virus construction and packaging 183 



Recombinant AAV vectors were serotyped with AAV1 coat proteins and packaged at the UPenn 184 

vector core. Viral titers were 5×1012 particles per mL for AAV1.CaMKII.ChR2-185 

eYFP.WPRE.hGH, and AAV1. CaMKII(1.3).eYFP.WPRE.hGH. 186 

 187 

Viral injection 188 

Rats were anesthetized with isoflurane (1.5 to 2%). In all experiments, virus was delivered to the 189 

prelimbic PFC only. Rats were unilaterally injected with 0.5 µL of viral vectors at a rate of 0.1 190 

µL every 20 s with a 26-gauge 1 µL Hamilton syringe at anteroposterior (AP) +2.9 mm, 191 

mediolateral (ML) ±1.6 mm, and dorsoventral (DV) −3.7 mm, with tips angled 17° toward the 192 

midline. The microinjection needles were left in place for an additional 10 min, raised 1 mm, and 193 

left for another minute to allow for diffusion of virus particles away from injection site and to 194 

minimize spread of viral particles along the injection tract. After viral injections, the scalp was 195 

sutured and given three weeks for viral expression before optic fiber and electrode implantation.  196 

 197 

Prelimbic PFC optic fiber and ACC silicon probe implantation surgery 198 

Optic fiber and electrode implants were performed as described in previous studies31,33. We 199 

constructed custom fiber optic cannulae with 200 μm optic fibers held in 2.5 mm ferrules 200 

(Thorlabs) for prelimbic PFC optogenetic stimulation. 32-channel silicon probes (Buzsaki32-201 

H32, NeuroNexus Technologies, or ASSY-116 E-1, Cambridge NeuroTech) were glued with 3D 202 

printed custom design drives or commercial dDrives (NeuroNexus) for ACC recording. During 203 

the implant, rats were anesthetized with isoflurane (1.5 to 2%). Optic fibers were implanted 0.5 204 

mm right above prelimbic PFC viral injection spot (AP +2.9 mm, ML ±1.6 mm, DV -3.2 mm), 205 

with tips angled 17° toward the midline. Contralateral to the optical fiber implant, silicon probes 206 



were implanted in the ACC (AP +2.7mm, ML±1.6 mm, DV -2.0 mm) with tips angled 22° 207 

toward the midline. Silicone artificial dura gel (Cambridge NeuroTech) was added to protect the 208 

dura. Vaseline was used for wrapping electrode movable parts, which include silicon probe 209 

shanks and flexible cables, and drive shuttle. Both optical fiber and drive were secured to the 210 

skull screws with dental cement. After surgery, rats were given one week to recover before 211 

neural recordings. 212 

 213 

In vivo electrophysiological recordings and optogentic stimulation 214 

The hardware of the BMI system for pain experiments consists of following components: 215 

electrode arrays (with drives) and headstages, commutator, data acquisition system, Optic fiber 216 

cannulas, blue LED or blue laser, desktop computer, video cameras and other optional devices, 217 

as shown in Fig. 1 and Extended Data Fig. 1. 218 

 219 

Animals with chronic optical fiber and electrode implants were given a 30 min period to 220 

habituate to a recording chamber over a mesh or glass table before recording. Silicon probes 221 

were connected with 32-ch digital headstages (HST/32D, Plexon) and wired through a motorized 222 

commutator (OPT/Carousel M Commutator 2LED-4DHST-TH, Plexon). Optic fiber cannulas 223 

were connected with a 465nm blue LED (OPT/LED_Blue_Compact_LC_magnetic, Plexon) 224 

through mating sleeves (ADAF2, Thorlabs) and fiber patch cables. The blue LED was 225 

magnetically mounted on the same carousel commutator.  226 

 227 

Neural signals were recorded at 40 kHz through a 64-ch OmniPlex data acquisition system 228 

(Plexon). The spikes were thresholded from high-pass filtered (>300 Hz) raw neural signals and 229 



further online spike sorted through 2D Polygon method (PlexonControl, Plexon). Only spikes 230 

with high signal-to-noise ratio (SNR>3) were selected for BMI population decoding. Online 231 

sorted spike time events were packaged and sent to BMI client software through Plexon 232 

application program interfaces with 50-ms bin size. The state space model would calculate the 233 

output inference of current latent variable based on the binned spike counts. The model would 234 

trigger an optogenetic stimulation if the threshold criteria was met. In the meantime, the raw 235 

neural signals, online sorted spikes, multiple event time stamps which included pain stimulus 236 

events, pain onset detection events, optogenetic stimulus events were recorded through 237 

PlexControl (Plexon) for further offline data analysis.  238 

 239 

For optogenetic stimulation, the blue LED was controlled by OmniPlex digital 5V TTL output. 240 

And the optic fiber tip output power was calibrated before experiments. The parameters for 241 

optogenetic stimulation were 20 Hz with 10-ms pulse width, of 5-s duration.  242 

 243 

During recording, three video cameras (DMK23U, Imaging Source, FDR-AX53, Sony) were 244 

used to record rat behavior and BMI client software online-decoding results. The cameras were 245 

synchronized with neural recording at the beginning of each recording session. Long inter-trial 246 

intervals between trials were used to avoid behavioral or neural sensitization.  247 

 248 

State-space method for detecting the pain onset  249 

Pain perception is a dynamic process, and the pain percept can be modeled as an abstract latent 250 

variable. In our previous work, we have formulated the problem of detecting the onset of pain 251 

signals as a change-point detection problem24,25. The detection problem was resolved by a state-252 



space method, where the state-space model (SSM) consists of a state equation and a 253 

measurement equation43. In the state equation, we assumed that the temporal neural activity yk 254 

(k=1,…,K), represented by a C-dimensional vector, was driven by a common one-dimensional 255 

latent Markovian process zk : 256 ݖ௞ = ௞ିଵݖܽ + ߳௞ 

where ߳௞ specifies a temporal Gaussian prior (with zero mean and variance σ2) on the latent 257 

process, and 0<|a|<1 is the first-order autoregressive (AR) coefficient. In the measurement 258 

equation, we assumed the Poisson linear dynamical system (PLDS) for neuronal ensemble 259 

spikes, with the observation vector yk consisting of spike count of C neurons (bin size ∆), where 260 

the logarithm of the neuronal firing rate, ηk, is modulated by a weight factor in vector c plus a 261 

DC term d 262 ࣁ௞ = ௞ݖࢉ +  264 ,(∆(௞ࣁ)	exp)݊݋ݏݏ݅݋ܲ~௞࢟ 263 ,ࢊ

The second equation is a generalized linear model (GLM) that employs an exponential link 265 

function through ηk, where yk is Poisson distributed with the rate parameter exp(ηk). 266 

 267 

Let Θ denote all unknown model parameters, and we have developed an iterative expectation-268 

maximization (EM) algorithm to infer latent state sequences (E-step) and unknown parameters 269 

Θ={a, c, d, σ2} (M-step). Upon model identification, an online recursive filter was run to 270 

estimate the latent state estimate ̂ݖ௞24,25. We then computed the Z-score related to the baseline: 271 Z_score = ௭ି୫ୣୟ୬(௭ౘ౗౩౛ౢ౟౤౛)ୗୈ(௭ౘ౗౩౛ౢ౟౤౛)  and further converted it to probability or one-tailed P-value23. We 272 

monitored the probability to assess the significance of change point detection. The criterion of Z-273 

score change was determined by a critical threshold for reaching statistical significance. The first 274 



time point that crossed the significance threshold for the change point was treated as the onset of 275 

pain. Using 95% significance level, it was concluded that when Z-score−CI > 1.65 or Z-score + 276 

CI < −1.65, where the CI denotes the confidence interval derived from the state posterior 277 

variance. 278 

 279 

BMI software development 280 

The BMI software that manages the operation of the system was run on a desktop PC (Intel Xeon 281 

E5-1620 CPU, 3.5 GHz, 48 GB memory, Window OS). The software supported the hardware 282 

platform for online neural decoding analysis and the graphic user interface (GUI). 283 

 284 

The components and tasks of the BMI system was managed by a client software including the 285 

following modules: (i) data acquisition and buffering, (ii) online neural encoding/decoding 286 

algorithms, (iii) external device control, (iv) configuration management, and (v) user interfaces. 287 

We developed the software in C/C++ programming language along with the software developing 288 

toolkit provided by Plexon and other open-source software packages. To accommodate 289 

maximum flexibility while minimizing the complexity of maintenance, the functional modules in 290 

the software were designed with encapsulation for decoupling purposes.  291 

 292 

Proper buffering was required for both the streaming neural signals and the decoding analysis 293 

results. In online BMI experiments, although the total recording time lasted for an hour or more, 294 

only the recent recorded data contributed to the detection analysis (e.g. computation of Z-score 295 

and its confidence intervals) of the current time point. Therefore, we used a small buffer space to 296 

store the newest data and updated the buffer when new data arrived. To minimize the data 297 



transfer cost in the buffer space, we used a circular buffering strategy; namely, the newest data 298 

always overwrote the oldest one.  299 

 300 

The software consists of multiple task threads44. In order to avoid the mutual blocking between 301 

multiple tasks, we assigned different tasks on multiple threads running in parallel. The task 302 

threads included the acquisition thread, training threads, online decoding threads, user interface 303 

(UI) thread and external device controlling thread (Extended Data Fig. 2a). A custom GUI was 304 

designed and managed by the UI thread, allowing the visualization of the streaming neural 305 

signals as well as the response for user operations (Extended Data Fig. 2b).  306 

 307 

Complete Freund’s Adjuvant (CFA) administration 308 

To induce chronic inflammatory pain, 0.1 mL of CFA (Mycobacterium tuberculosis, Sigma-309 

Aldrich) was suspended in an oil saline 1:1 emulsion and injected subcutaneously into the plantar 310 

aspect of the hind paw. CFA injections were administered into the paw that was contralateral to 311 

implanted recording electrodes. 312 

 313 

Spared nerve injury (SNI) procedure 314 

SNI procedure was performed as described previously45. After rats were anesthetized with 315 

isoflurane (1.5 to 2%), the skin on the lateral surface of the thighs was incised. The bicep femoris 316 

was dissected to expose the sciatic nerve and its three terminal branches: sural, common 317 

peroneal, and tibial nerves. The common peroneal and tibial nerves were tied off with 318 

nonabsorbent 5-0 silk sutures at the proximal point of the trifurcation, and then cut distal to each 319 

knot to prevent reattachments. The muscle layer was then sutured closed with 4-0 absorbable 320 



sutures and the skin was sutured closed with 3-0 silk sutures. SNI procedure was always done on 321 

the side contralateral to implanted recording electrodes. 322 

 323 

Hargreaves Test (Plantar Test) 324 

The Hargreaves test was performed to evaluate the rats’ response to acute thermal stimulation. A 325 

mobile radiant heat-emitting device with an aperture of 10 mm (37370 plantar test, Ugo Basile) 326 

was used to produce acute thermal stimulation of the plantar surface of the hind paw. The rats 327 

were placed in a plexiglass chamber over a Hargreaves glass table and allowed to habituate. An 328 

average of at least 5 trials were performed to measure the latency to paw withdrawal for each 329 

testing condition. This latency was automatically recorded, and an average latency across the 330 

trials was computed. Paw withdrawals resulting from locomotion or weight shifting were not 331 

counted and the trials were repeated in such cases. Measurements were repeated at 332 

approximately 5-min intervals. An IR intensity of 70 was used to provide noxious stimulation, 333 

and intensity of 10 was used as control for thermal stimulation that was not noxious. IR stimuli 334 

were terminated by paw withdrawals or held continuously for 5 s. 335 

 336 

For BMI experiments, the SSM was trained with 1-5 trials of noxious stimulus at the beginning 337 

of the experiment. Following this, an average of at least 5 trials were performed with activation 338 

of the BMI to test the efficacy of the BMI in inhibiting peripheral pain response. Measurements 339 

were repeated at 3-5 min intervals. 340 

Mechanical pain detection 341 

Rats with optic fiber and silicon probe implants were given 30 min to habituate in a plexiglass 342 

chamber over a mesh table. The SSM was trained using a noxious stimulus (pin prick, or PP, in 343 



naive rats, and 6g von Frey filaments, or vF, in CFA- or SNI-treated rats). The noxious stimulus 344 

was applied to the plantar surface of the hind paw contralateral to the ACC recording site in free-345 

moving rats. Noxious stimulations were terminated by paw withdrawal. Following model 346 

training, a period of rest was given the rats to avoid behavioral or neural hypersensitivity. A total 347 

of 20-25 trials were then performed with each stimulus (equal number for each stimulation type 348 

with variable inter-trial intervals) to generate Raster plots and to assess pain detection accuracy. 349 

As a control, a non-noxious stimulus (6g vF in naive rats and 0.4g vF in CFA- or SNI-treated 350 

rats) was delivered to the plantar surface of the hind paw contralateral to the brain recording site 351 

in free-moving rats. Non-noxious stimulations were applied for approximately 5 s or until paw 352 

withdrawal.  353 

 354 

Mechanical allodynia test 355 

A Dixon up-down method with vF filaments was used to measure mechanical allodynia45. Prior 356 

to testing, the rats were placed in a plexiglass container over a mesh table and acclimated for 20 357 

minutes. A set with logarithmically incremental stiffness (0.45, 0.75, 1.20, 2.55, 4.40, 6.10, 358 

10.50, 15.10) were applied to the hind paw in order to calculate 50% withdrawal thresholds. 359 

 360 

For BMI experiments, CFA or SNI-treated rats with optic fiber and electrode implants were 361 

placed in a plexiglass chamber over a mesh table and allowed to habituate. 1-5 trials of 6g vF 362 

stimulus delivered to the hind paw of the rat were used to train the SSM. Subsequently the rats 363 

were allowed a period of rest to avoid hypersensitivity. The testing trials followed the Dixon up-364 

down method. Trials with detection were used to calculate 50% withdrawal thresholds. All 365 



stimulations were applied to the plantar surface of the hind paw contralateral to the brain 366 

recording site.  367 

 368 

Conditioned place aversion test for evoked pain 369 

CPA experiments were conducted in a connected two-chamber device. Animal movements in 370 

each chamber were recorded by a high-speed camera from above the chamber and analyzed with 371 

the AnyMaze software (Stoelting Co.), followed by visual verification of the recorded videos by 372 

an independent experimenter. The CPA protocol consists of preconditioning (baseline), 373 

conditioning, and testing phases. During 10-min preconditioning, the rat was allowed to move 374 

freely between the two chambers, and the time spent in each chamber was recorded. Rats that 375 

spent more than 500 s or less than 100 s in each chamber during the preconditioning phase were 376 

not used in further testing. After the training of the model, the rat was then conditioned with 377 

either BMI or random optogenetic activation of the PFC. One of the chambers was paired with 378 

BMI and the other chamber with random optogenetic activation of matching intensity, number 379 

and duration (control). The animal was confined to one of the associated chambers during each 380 

conditioning phase. During conditioning with BMI, the total number and duration of optogenetic 381 

activation events were calculated. The same number and duration of optogenetic activation was 382 

randomly delivered in the opposite control chamber. Optogenetic activation and chamber 383 

pairings were counterbalanced. The same peripheral stimulus was used in both chambers during 384 

the conditioning. PP and 6g vF (control) were used for the testing of naïve rats. For experiments 385 

with CFA- and SNI-treated rats, 6g vF and 0.4g vF (control) were used to deliver peripheral 386 

stimulus to the hind paw, whereas 6g stimulus was used to train the model. During the test phase, 387 



the animal was not given any peripheral stimulus or optogenetic activation and had access to 388 

move freely between the chambers. The time spent in each chamber was recorded and analyzed.  389 

 390 

Conditioned place aversion test for tonic pain 391 

CPA experiments were conducted for CFA- or SNI-treated rats in a connected two-chamber 392 

device. Animal movements in each chamber were recorded by a high-speed camera from above 393 

the chamber and analyzed with the AnyMaze software, followed by visual verification of the 394 

recorded videos by an independent experimenter. The CPA protocol consists of preconditioning 395 

(baseline), conditioning, and testing phases. During the 10 min of preconditioning, the rat was 396 

allowed to move freely between the two chambers, and the time spent in each chamber was 397 

recorded. Rats that spent more than 500 s or less than 100 s in each chamber during the 398 

preconditioning phase were not used in further analysis. Following preconditioning, the SSM 399 

was trained with 6g vF filament stimulation of the hind paw. During conditioning (60 min total), 400 

no peripheral stimulus was given, but rats received either BMI-triggered optogenetic activation 401 

of the prelimbic PFC or random PFC (control) activations of matching duration and intensity. 402 

The animal was confined to one of the associated chambers during each conditioning phase.  403 

During conditioning with BMI, the total number and duration of optogenetic activation events 404 

were calculated, and the same number and duration of activation was randomly delivered in the 405 

opposite control chamber. Furthermore, optogenetic activation and chamber pairings were 406 

counterbalanced. During the test phase, the animal was not given any peripheral stimulus or 407 

optogenetic activation and had access to move freely between the chambers.  The time spent in 408 

each chamber was recorded and analyzed.  409 

 410 



Offline data statistical analysis 411 

The neural data and behavior data were offline analyzed by custom MATLAB (Version 2018, 412 

MathWorks) scripts, NeuroExplorer (Version 5.0, NeuroExplorer) and GraphPad Prism Version 413 

8 software (GraphPad). Online-sorted spikes were further offline spike sorted by Offline Sorter 414 

(4.0, Plexon). For each sorted neuron, a peri-stimulation time histograms (PSTH) was generated 415 

5 s before and after the onset of the peripheral stimulus with 100 ms bin size. The normalized Z-416 

score firing rates at each bin was calculated by the following equation: Z = (FR – mean of FRb) / 417 

standard deviation of FRb, where FR indicates firing rate and FRb indicates baseline firing rate 418 

prior to stimulus. A positive or negative response unit was defined by at least 2 consecutive bins 419 

firing rates were higher or lower than mean of FRb+/-3 standard deviation of FRb within the 420 

range (0-5 s) for Hargreaves Test or (0-1 s) for PP and vF test. The cumulative firing rate was 421 

calculated by MATLAB function trapz. Positive pain onset detection trials were defined by SSM 422 

prediction within 5 seconds after stimulus (0-5 s). Detection rates were calculated by positive 423 

pain onset detection trials divided total stimulus trials. Student’s t test was used to compare z 424 

scored firing rates across different conditions, and paired t test was used for repeated data. 425 

Fisher’s exact test was used to analyze the population changes for pain response     426 

 427 

The results of behavioral experiments were given as mean ± S.E.M. For mechanical allodynia, a 428 

one way ANOVA with repeated measures and post-hoc multiple pair-wise comparison 429 

Bonferroni tests was used to compute the 50% withdrawal threshold over time, whereas an 430 

unpaired Student’s t test was used to calculate the difference in allodynia between BMI and 431 

control conditions. During the CPA test, a paired Student’s t test was used to compare the time 432 

spent in each treatment chamber before and after conditioning (i.e. preconditioning vs testing 433 



phase for each chamber). A CPA score was calculated by subtracting the time spent in the more 434 

noxious chamber during the testing phase from the time spent in that chamber during the 435 

preconditioning phase. A two-tailed unpaired Student’s t test was used to compare differences in 436 

CPA scores under various testing conditions. 437 

 438 

Immunohistochemistry 439 

Rats were deeply anesthetized with isoflurane and transcardially perfused with ice-cold PBS. 440 

Brains were fixed in paraformaldehyde overnight and then transferred to 30% sucrose in PBS for 441 

3 days. Next, 20µm coronal sections were collected using Leica CM3050S cryostat] (Leica 442 

Biosystems). Images containing electrodes of cannula were stained with cresyl violet and viewed 443 

using an Axio Zoom widefield microscope (Carl Zeiss).  444 

 445 
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 561 

Figure Legends 562 

Fig 1. Design of a closed-loop brain-machine interface (BMI) to detect and treat pain. a, 563 

Schematic of BMI that consists for three steps: (1) Neural recording and online signal processing 564 

including spike sorting; (2) neural decoding for pain onset detection based on sorted units; (3) 565 

pain onset detection to trigger therapeutic neurostimulation. b, Placement of optic fiber in the 566 

prelimbic prefrontal cortex (PFC) and recording electrodes in the anterior cingulate cortex 567 

(ACC).  c, Left: schematic of the state-space model (SSM) for detecting the change point (pain 568 

onset) from the neuronal ensemble spike activity. Right: an example of pain onset detection 569 

using the SSM-based decoding strategy. The SSM parameters were inferred from the ACC 570 



ensemble spike data directly in the training stage, and the Z-score (red trace) was calculated from 571 

the inferred latent variable (see Methods). 572 

 573 

Fig 2. Closed-loop BMI control of acute mechanical and thermal pain. a, Schematic of BMI 574 

experiments during thermal pain delivery with an infrared (IR) emitter. Stimulus presentation 575 

lasted until paw withdrawal or 5 s. b, Peripheral nocifensive behavioral response to thermal 576 

stimulation. A noxious stimulus (IR 70) triggered paw withdrawals, whereas a non-noxious 577 

stimulus (IR 10) did not. n = 7-17; p < 0.0001, unpaired Student’s t test. c, d, The SSM-based 578 

decoder detected the onset of a pain episode in a single trial in response to noxious stimulation 579 

(IR 70), in contrast to a trial with non-noxious stimulation (IR 10). Rasters show online sorted 580 

population spike counts with a bin size of 50 ms. The color bar indicates spike count, with the 581 

darker color representing greater spike counts. The red curve represents the estimated Z-score 582 

from the univariate latent state, and the shaded area marks the confidence intervals (see 583 

Methods). Horizontal dashed lines mark the thresholds for statistical significance. The vertical 584 

lines indicate the time of peripheral stimulation; red: noxious stimulus; green: non-noxious 585 

stimulus. e, Accuracy of SSM-based decoder in detecting acute thermal pain. n = 7-18; p < 586 

0.0001, unpaired Student’s t test. f, Schematic of SSM-decoder training and behavior testing 587 

with BMI. g, Pain onset detection occurred prior to withdrawal responses to noxious thermal 588 

stimulations. n = 9; p = 0.0057, paired Student’s t test. h, Application of the closed-loop BMI 589 

prolonged the withdrawal latency on Hargreaves’ test. No opto vs. BMI opto: n = 8; p = 0.0074, 590 

no opto vs. manual opto: n = 8; p = 0.0027, BMI opto vs. manual opto: n = 8; p = 0.4486, one-591 

way ANOVA, Tukey’s multiple comparisons test with repeated measures. i, Schematic of BMI 592 

experiments during mechanical stimulus delivery. j, Peripheral nocifensive behavioral response 593 



to mechanical stimulation. A noxious stimulus (pin prick or PP) triggered paw withdrawals, 594 

whereas a non-noxious stimulus (6g von Frey filament, or vF) did not. n = 9; p < 0.0001, paired 595 

Student’s t test. k, l, The SSM-based decoder detected the onset of a pain episode in a single trial 596 

in response to noxious stimulation (PP), in contrast to a trial with non-noxious stimulation (6g 597 

vF). m, Accuracy of SSM-based decoder in detecting mechanical pain. n = 9; p = 0.0002, paired 598 

Student’s t test. n, Schematic of CPA to assess pain aversion. In a two-chamber set up, aversive 599 

response was triggered by a noxious mechanical stimulus (PP) applied to the hind paws. One of 600 

the chambers was paired with BMI, and the opposite chamber was paired with random PFC 601 

activation of matching duration and intensity. o, After conditioning, rats preferred BMI treatment 602 

in the presence of acute pain stimuli. n = 9; p = 0.0007, paired Student’s t test. p, YFP control 603 

rats demonstrated no preference for the BMI treatment. n = 4; p = 0.5657, paired Student’s t test. 604 

q, CPA scores for BMI treatment in rats that experienced acute mechanical pain. n = 4-9; p = 605 

0.0147, unpaired Student’s t test. r, Left: a representative ACC neuron increased firing rates in 606 

response to a noxious thermal stimulus (IR 70).  Right: BMI reduced firing rate changes in 607 

response to the noxious stimulus. Time 0 indicates the onset of the stimulus. FR: firing rates. s, 608 

BMI treatment reduced the peak firing rates of pain-responsive ACC neurons in response to the 609 

noxious stimulus (see Methods). n = 33, p = 0.0004, paired Student’s t test. t, BMI treatment 610 

reduced cumulative firing rate response of ACC neurons over a 5-s period (within the [0, 5] s 611 

range, where time 0 indicates the onset of the stimulus) in response to the noxious stimulus. n = 612 

33, p = 0.0135, paired Student’s t test.  613 

 614 

Fig 3. Closed-loop BMI control of evoked pain in models of chronic inflammatory and 615 

neuropathic pain. a, Schematic for the CFA model of inflammatory pain. b, Peripheral 616 



allodynia response after CFA treatment. 6g vF triggered paw withdrawals, whereas 0.4g vF did 617 

not. n = 7; p = 0.0008, paired Student’s t test. c, d, The SSM-based decoder detected the onset of 618 

a pain episode in a single trial in response to peripheral allodynia-inducing stimulus (6g vF) in a 619 

CFA-treated rat, in contrast to a trial with a non-allodynia-inducing stimulus (0.4g vF). 620 

Population spike counts of sorted ACC units with a bin size of 50 ms. The color bar indicates 621 

spike count, with the darker color representing greater spike counts. The red curve represents the 622 

estimated Z-score from the univariate latent state, and the shaded area marks the confidence 623 

intervals. Horizontal dashed lines mark the significance thresholds. The vertical lines indicate the 624 

time of peripheral stimulation; red: noxious stimulus; green: non-noxious stimulus. e, Accuracy 625 

of SSM-based decoder in detecting the onset of mechanical allodynia in CFA-treated rats. n = 7; 626 

p = 0.0008, paired Student’s t test. f, Closed-loop BMI inhibited mechanical allodynia in CFA-627 

treated rats. n = 4-6; p = 0.0002, unpaired Student’s t test. g, Schematic of the CPA assay in 628 

CFA-treated rats. Aversive response was triggered by an allodynia-inducing mechanical stimulus 629 

(6g vF) applied in both chambers. One of the chambers was paired with BMI, and the opposite 630 

chamber was paired with random PFC activation of matching duration and intensity. h, BMI 631 

treatment reduced aversion associated with mechanical allodynia (triggered by the 6g vF 632 

stimulus) in the CFA model. n = 8; p= 0.0007, paired Student’s t test. i, YFP control rats 633 

demonstrated no preference for the BMI treatment. n = 4; p = 0.6191, paired Student’s t test. j, 634 

CPA scores for BMI treatment in CFA-treated rats. n = 4-8; p = 0.0062, unpaired Student’s t test. 635 

k, Schematic for the SNI model of chronic neuropathic pain. l, Peripheral allodynia response 636 

after SNI. 6g vF triggered paw withdrawals, whereas 0.4g vF did not. n = 6; p < 0.0001, paired 637 

Student’s t test. m, n, The SSM-based decoder detected the onset of a pain episode in a single 638 

trial in response to peripheral allodynia-inducing stimulus (6g vF) in a SNI-treated rat, in 639 



contrast to a trial with a non-allodynia-inducing stimulus (0.4g vF). o, Accuracy of SSM-based 640 

decoder in detecting mechanical allodynia in SNI-treated rats. n = 6; p = 0.0008, paired Student’s 641 

t test. p, Closed-loop BMI inhibited mechanical allodynia in the SNI model. n = 4-5; p = 0.0004, 642 

unpaired Student’s t test. q, Schematic of the CPA assay in SNI-treated rats. Aversive response 643 

was triggered by an allodynia-inducing mechanical stimulus (6g vF) applied in both chambers. 644 

One of the chambers was paired with BMI, and the opposite chamber was paired with random 645 

PFC activation of matching duration and intensity. r, BMI treatment reduced aversion associated 646 

with mechanical allodynia in the SNI model. n = 6; p = 0.0016, paired Student’s t test. s, YFP 647 

control rats demonstrated no preference for the BMI treatment. n = 4; p = 0.4102, paired 648 

Student’s t test. t, CPA scores for BMI treatment in SNI-treated rats. n = 4-6; p = 0.0275, 649 

unpaired Student’s t test. 650 

 651 

Fig 4. Closed-loop BMI control of spontaneous pain in chronic pain models. a, Schematic of 652 

the CPA test in the CFA model to test tonic or spontaneous pain. No peripheral stimuli were 653 

given. One of the chambers was paired with BMI, and the opposite chamber was paired with 654 

random PFC activation of matching duration and intensity. b, An example of sequential pain 655 

onset detection based on the SSM-based decoder in a CFA-treated rat. Arrows indicate detected 656 

onset of tonic pain episodes. c, CFA-treated rats prefer the BMI chamber. n = 6; p= 0.0096, 657 

paired Student’s t test. d, YFP control rats demonstrated no preference for the BMI treatment. n 658 

= 4; p = 0.7803, paired Student’s t test. e, CPA scores for BMI treatment in CFA-treated rats in 659 

reducing tonic pain. n = 4-6; p = 0.0140, unpaired Student’s t test. f, Schematic of the CPA test 660 

in the SNI models to test tonic pain. No peripheral stimuli were given. One of the chambers was 661 

paired with BMI, and the opposite chamber was paired with random PFC activation. g, An 662 



example of sequential pain onset detection based on the SSM-based decoder in a SNI-treated rat. 663 

Arrows indicate detected onset of tonic pain episodes. h, SNI-treated rats preferred the BMI 664 

chamber after conditioning. n = 6; p = 0.0127, paired Student’s t test. i, YFP control rats 665 

demonstrated no preference for the BMI treatment. n = 4; p = 0.9456, paired Student’s t test. j, 666 

CPA scores for BMI treatment in SNI-treated rats. n = 4-6; p = 0.0379, unpaired Student’s t test. 667 
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